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The effects of adverse pressure gradients on turbulent structures were investigated
by carrying out direct numerical simulations of turbulent boundary layers subjected
to adverse and zero pressure gradients. The equilibrium adverse pressure gradient
flows were established by using a power law free-stream distribution U∞ ∼ xm. Two-
point correlations of velocity fluctuations were used to show that the spanwise
spacing between near-wall streaks is affected significantly by a strong adverse pressure
gradient. Low-momentum regions are dominant in the middle of the boundary layer as
well as in the log layer. Linear stochastic estimation was used to provide evidence for
the presence of low-momentum regions and to determine their statistical properties.
The mean width of such large-scale structures is closely associated with the size of the
hairpin-like vortices in the outer layer. The conditionally averaged flow fields around
events producing Reynolds stress show that hairpin-like vortices are the structures
associated with the production of outer turbulence. The shapes of the vortices beyond
the log layer were found to be similar when their length scales were normalized
according to the boundary layer thickness. Estimates of the conditionally averaged
velocity fields associated with the spanwise vortical motion were obtained by using
linear stochastic estimation. These results confirm that the outer region of the
adverse pressure gradient boundary layer is populated with streamwise-aligned vortex
organizations, which are similar to those of the vortex packet model proposed by
Adrian, Meinhart & Tomkins (J. Fluid Mech., vol. 422, 2000, pp. 1–54). The adverse
pressure gradient augments the inclination angles of the packets and the mean
streamwise spacing of the vortex heads in the packets.

1. Introduction
Turbulent boundary layers (TBLs) are subjected to adverse pressure gradients

(APGs) in numerous engineering applications, such as diffusers, turbine blades and
the trailing edges of aerofoils. The upper limit of the efficiency of such devices is
almost always determined by the APG, so the behaviour of the APG flows is of
practical importance. Understanding the coherent structures in TBLs is essential to
understanding boundary layer turbulence. Since organized motions play a crucial role
in the production and dissipation of wall turbulence, the study of coherent structures
contributes to the accuracy of turbulence models (Aubry et al. 1988) and advances in
flow control strategies (Robinson 1991). Therefore, elucidating the behaviour of the
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coherent structures in APG TBLs provides insight into the physics of the APG flow
and improves its modelling.

Most previous studies of organized motions have been carried out for a zero
pressure gradient (ZPG) boundary layer and flow bounded by a smooth wall and
have focused on the near-wall region. In a flow visualization study of ZPG TBLs,
Kline et al. (1967) found that low-speed streaks are present in the sublayer and that
the mean spanwise spacing between the streaks is approximately 100 viscous wall
units. Kline & Robinson (1989) and Jeong et al. (1997) observed that quasi-streamwise
vortices are predominant in the buffer regions of TBLs. It is widely accepted that
near-wall streaks and quasi-streamwise vortical structures are the most significant
structures in TBLs and that they are responsible for most turbulence production near
walls.

Much effort has recently been devoted to investigating the outer structures of
TBLs, especially with regard to the role of hairpin packets. Adrian (2007) has
provided a comprehensive review of these studies. Theodorsen (1952) was the first
to propose a hairpin model. Throughout this paper, ‘hairpin vortex’ is used to
describe both asymmetric and symmetric hairpins that have the shape of an arch, a
horseshoe, a hairpin and a cane-shaped vortex. Bandyopadhyay (1980) and Head &
Bandyopadhyay (1981) performed smoke flow visualizations of ZPG TBLs and found
groups of hairpin structures in boundary layers with low to high Reynolds numbers.
Smith et al. (1991) proposed the theoretical mechanism on the basis of their previous
experimental results (Acarlar & Smith 1987) that successive in-line hairpins could
be formed. Zhou et al. (1999) performed a direct numerical simulation (DNS) of
the evolution of a hairpin vortex to explore the formation mechanism of hairpins in
packets. They suggested that any primary hairpin with a vorticity above a threshold
strength autogenerates new hairpin vortices both upstream and downstream of the
initial hairpin.

Recent high-resolution velocity field measurements with particle image velocimetry
(PIV) have shown that hairpin vortices are commonly observed in logarithmic layers
and in the wake regions of TBLs (Adrian et al. 2000). These vortices form packets and
convect with nearly the same velocities. Christensen & Adrian (2001) carried out linear
stochastic estimations (LSEs) that supported the observations of Adrian et al. (2000).
A streamwise series of hairpins was found to induce low-speed flows (Adrian et al.
2000; Tomkins & Adrian 2003). A PIV study carried out by Ganapathisubramani,
Longmire & Marusic (2003) demonstrated that such outer low-speed streaky structures
and hairpin vortex packets create most of the mean Reynolds shear stress in the outer
layer. Marusic (2001) concluded that the packet model can be used to generate
turbulence statistics that are better than those provided by the randomly scattered
hairpin model (Perry, Henbest & Chong 1986). This result confirms the presence and
importance of hairpin packets in ZPG TBLs.

Many important features of APG TBLs are quite well understood. In general, as
the magnitude of the APG increases, the mean velocity profile develops a large wake
region and the turbulent kinetic energy decreases in the near-wall region (Nagano,
Tagawa & Tsuji 1993). In an experimental study of an APG TBL near separation,
Sk̊are & Krogstad (1994) found that the statistics in the outer layer are significantly
affected by a strong APG. In particular, there is an outer peak in the Reynolds
shear stress in the outer layer due to the APG. Further, there is an outer peak in
the production term of the turbulent kinetic energy that is due to the peak in the
Reynolds shear stress. A recent DNS study of APG TBLs by Lee & Sung (2008)
has supported the conclusions of previous experiments (Nagano et al. 1993; Sk̊are &
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Figure 1. Schematic diagram of the computational domain and coordinate system.

Krogstad 1994), in particular that the production of turbulence in the outer layer is
as significant as near-wall turbulence.

Little is known about the effects of APGs on coherent structures in TBLs. Krogstad
& Sk̊are (1995) studied the structures in a TBL subjected to a strong APG. By using
two-point velocity correlations, they showed that the streamwise correlation length
of the streamwise velocity decreases when a strong APG is applied but that the
inclination angles of the correlations in the outer layers of the APG and ZPG
flows are similar. Marusic & Perry (1995) and Perry & Marusic (1995) extended the
attached-eddy hypothesis, based on the idea of Townsend, to APG TBLs by making
the assumption that each individual eddy is independent of the pressure gradient.
The randomly scattered hairpin model can be used to reproduce many statistical
properties of ZPG TBLs. However, they found that hairpin-type eddy models fail to
reconstruct the shear stress distributions in the outer layers of several different APG
boundary layers and concluded that large-scale eddies must be taken into account to
predict the properties of the APG flows. In a DNS study of low-Reynolds-number
APG TBLs, Skote, Henningson & Henkes (1998) proposed that enhanced outer
turbulence is associated with outer streaky structures. Although the evidence for
large-scale structures in the APG flows is strong, relatively little information about
the physics of such flow structures in APG TBLs is available.

The main objective of this study was to examine statistically the effects of APGs
on the coherent structures of TBLs. We used LSE (Adrian et al. 1989) to investigate
the conditionally averaged vortical structures in various APG TBLs. The DNS
database of TBLs with APGs generated by Lee & Sung (2008) was analysed. The
streamwise variation of the free-stream velocity must have the form of a power law
relation U∞ ∼ xm to produce an equilibrium TBL (Townsend 1961; Mellor & Gibson
1966).

A schematic diagram of the computational domain is shown in figure 1. To
investigate the effects of APGs, simulations were performed using two values of
m, −0.15 and −0.2, representing moderate and strong APGs respectively. For
comparison, a ZPG TBL (m =0) was also simulated. Most comparison of the
statistics was made in the equilibrium region. The instantaneous flow fields were
analysed to characterize the responses of the turbulent structures to the APGs.
Two-point correlations and LSE were used to determine the statistical properties
of the low-momentum regions (LMRs) and of individual vortices. Vortex packet
characteristics were obtained by using flow visualization. Finally, the conditionally
averaged velocity fields associated with transverse swirling motions were extracted
by using LSE in order to investigate the characteristics of the organized motions
statistically.



104 J.-H. Lee and H. J. Sung

m �x+ �y+
min �y+

max �z+ �t+ Lx/θin × Ly/θin × Lz/θin Grid

0 15 0.2 40 5 0.2 240 × 30 × 40 1025 × 161 × 513
−0.15 12.5 0.17 24 5 0.25 1600 × 80 × 80 2049 × 121 × 257
−0.2 12.5 0.17 24 5 0.25 1600 × 120 × 160 2049 × 161 × 513

Table 1. Simulation details.

2. Computational details
The governing equations were integrated in time by using the fractional step

method with the implicit velocity decoupling procedure proposed by Kim, Baek &
Sung (2002). In this approach, the terms are first discretized in time with the Crank–
Nicolson method, and then the coupled velocity components in the convection terms
are decoupled with the implicit velocity decoupling procedure. The overall accuracy
in time was second-order. All of the terms were resolved with a second-order central
difference scheme in space by using a staggered mesh. The domain size and the
spatial and time resolutions in wall units are summarized in table 1. The streamwise
resolution (�x+ ≈ 12.5) for APG was comparable to the one used in DNSs of APG
boundary layer flows performed earlier, �x+ ≈ 13 (Skote et al. 1998) and �x+ ≈ 16.6
(Na & Moin 1998). The total simulation time was 4900, 15 000 and 30 000 θin/U0,
and averaging time for turbulent statistics was 3500, 9000 and 24 000 θin/U0 for the
case of m =0, −0.15 and −0.2 respectively. Statistical quantities were averaged over
time and the spanwise direction.

Time-dependent ZPG turbulent inflow data at the inlet were generated with the
method of Lund, Wu & Squires (1998). The Reynolds numbers at the inlet were 300
for the APG flows and 1410 for the ZPG flow. A convective boundary condition of the
form (∂u/∂t)+c(∂u/∂x) = 0, where c is the local bulk velocity, was applied at the exit;
this boundary condition allows propagating vortex structures to exit the domain with
minimum distortion. The no-slip condition was imposed at the solid wall. Periodic
boundary conditions were applied in the spanwise direction. The free-stream velocity
U∞ along the upper boundary of the computational domain was specified as

u = U∞(x) =

{
U0 for x < 0,

U0

(
1 − x

x0

)m

for x � 0,

∂v

∂y
= −∂u

∂y
,

∂w

∂y
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where m denotes the exponent of the APG. Three cases (m = 0, −0.15 and −0.2) were
investigated (figure 2), which correspond to a ZPG (β = 0) and moderate (β =0.73)
and strong (β = 1.68) APGs, respectively. The non-dimensionalized pressure gradient
parameter β is defined as (δ∗/τw)dP/dx. Here, δ∗ is the displacement thickness and
τw is the wall shear stress. Figure 3 shows the location of the equilibrium region. The
values of Clauser’s parameters and the Reynolds number ranges in the equilibrium
region are listed in table 2. To ascertain the reliability and accuracy of these numerical
simulations, we compared the turbulence statistics for the ZPG case (m = 0) with the
experimental data of De Graaf & Eaton (2000) (see figure 4). The mean velocity and
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Figure 2. Free-stream velocity distribution along the upper boundary of the
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Figure 3. Clauser’s equilibrium parameters: non-dimensionalized pressure gradient
parameters β and G.

m β G Reθ

−0.15 0.73 9.70 1000–1300
−0.20 1.68 12.4 1200–1400

Table 2. Flow parameters.

turbulence intensities we obtained are in good agreement with those of De Graaf &
Eaton (2000).

3. Near-wall turbulence structures
Several types of structures were identified in the boundary layers. As mentioned

above, low- and high-speed streaks and quasi-streamwise vortices are the dominant
coherent structures in the near-wall region. These structures are closely related to the
production of wall turbulence (Robinson 1991). In this section, our discussion focuses
on the effects of the APGs on the near-wall streaky structures and quasi-streamwise
vortices and on the APGs’ statistical properties.



106 J.-H. Lee and H. J. Sung

0

1

2

3
β = 1.68

urms/uτ

0

1

2 vrms/uτ

0

1

2

3

 y+

U+

100 101 102

 y+
100 101 102103

–20

–10

0

10

20

30

U+ = 1/0.41 ln y++ 5.0

U + = y+

De Graaff & Eaton (2000)

β = 0

β = 1.68

β = 0.73

(a) (b)

(c)

(d)

β

β

β = 0.73
β = 0

β

–uv/uτ
2

Figure 4. (a) Mean velocity profiles. Root-mean-square velocity fluctuations: (b) urms ;
(c) vrms ; (d ) Reynolds shear stress.

50

0

0.150.100.050–0.05–0.10–0.15Flow u′/U0:

–300 0 300 600 900 1200

–50

z/
θ

in

x/θin

Figure 5. Instantaneous streamwise velocity fluctuation contours in a strong APG boundary
layer (m= −0.2) at y+ = 5.5 (at x = 900θin).

3.1. Instantaneous near-wall streaky structures

To investigate the responses of near-wall streaky structures to APGs, we visualized
the instantaneous streamwise velocity fluctuations for a strong APG TBL (m = −0.2).
The streamwise velocity streaks in the x–z plane at y+ ≈ 5.5 are illustrated in figure 5.
The contours are normalized by free-stream velocity at the inlet U0. The dark and
white areas represent lower- and higher-speed streaks respectively. The boundary layer
develops under a ZPG at the inlet, and the streamwise pressure gradient becomes
strongly adverse. Elongated streaks in the streamwise direction are clearly visible near
the inlet. The spacing between the streaks is well established. As the TBL is subjected
to the APG, the streaks are weakened compared with those in the inlet. A similar
damping effect of an APG on such streaks was also found in the results of Skote &
Henningson (2002).

The streaks are still visible in the APG region but are not as well-resolved as in the
ZPG region (see figure 5). The velocity fields were normalized with root-mean-square
velocity fluctuations in an attempt to visualize the near-wall streaks more clearly. The
near-wall streaks in the ZPG region are presented in figure 6(a) for comparison.
The field in figure 6(b) was obtained from the APG region identified in figure 5.
The grey areas and solid-line contours correspond to low- and high-speed streaks
respectively. The instantaneous characteristics of individual streaks in the APG and
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Figure 6. Streamwise velocity fluctuations at approximately y+ = 5.5 (grey flooded area,
u′ < − urms ; solid lines, u′ > − urms ): (a) β = 0; (b) β = 1.68. Contour levels are incremented
by urms .

ZPG boundary layers are qualitatively very similar. The low-speed streaks are longer
and narrower than the high-speed streaks in both flows. Similar observations were
obtained by Robinson (1991) in a study of ZPG boundary layers. The widths of the
low-speed streaks are also similar in the APG and ZPG flows. As can be seen in figure
6(a), the distance in the spanwise direction between the two streaks is well established
and is approximately 100 viscous wall units for the ZPG flow (Smith & Metzler
1983). However, the spacing of the streaks is affected significantly by the strong
APG. This result is inconsistent with that of the study of Finnicum & Hanratty
(1988), who suggested that the streak spacing is insensitive to the pressure gradient,
although strong effects were found for strong favourable gradient flows. In contrast,
it is apparent from figure 6(b) that the spanwise spacing of the near-wall streaks
is irregular and increases significantly up to 400 viscous wall units in the APG
flow. Since instantaneous realizations cannot be used to define quantitative structural
information unambiguously, a statistical analysis is necessary.

3.2. Statistical analysis of near-wall streaks

Two-point correlations were used to extract information about the size and relative
locations of near-wall streaky structures quantitatively. The two-point correlation
coefficients are defined as

RAB(r) =
〈A(x)B(x + r)〉

ArmsBrms

, (3.1)
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Figure 7. Spanwise two-point correlations at y+ = 5.5: (a) Ruu; (b) Rvv .

where r denotes the spatial separation vector and Arms and Brms are the root mean
squares of A and B respectively. The auto-correlation Ruu of the streamwise velocity
has previously been used to study the properties of such streaks (Kim, Moin &
Moser 1987). Figure 7(a) shows the auto-correlation Ruu as a function of spanwise
spatial separation. The results for the APG and ZPG flows appear to coincide at
Ruu > 0.2. This result confirms statistically that the widths of the individual streaks
are less sensitive to the APG. Kim et al. (1987) suggested that the average spanwise
spacing between the streaks is roughly twice the separation between the minima in
Ruu. The correlations become negative and reach a minimum at r+

z ≈ 50, except when
β = 1.68. In particular, the negative peak in the correlations for β =1.68 is broad and
is located at a larger separation in the range 80< r+

z < 240. These statistical results
indicate that the near-wall streaks are dominant in the strong APG boundary layer
and that the strongest APG considered here does not affect the individual widths of
the streaks. However, the spanwise spacing of the streaks is increased and disordered
by the strong APG. The conditional correlations are considered to investigate the
effect of the APG on the streamwise extent of near-wall low- and high-speed streaks.
The conditional correlations are defined as

Ruu(r |u(x) < 0) =
〈u(x)u(x + r)|u(x) < 0〉

〈u(x)u(x)|u(x) < 0〉 , for low-speed streak,

Ruu(r |u(x) > 0) =
〈u(x)u(x + r)|u(x) > 0〉

〈u(x)u(x)|u(x) > 0〉 , for high-speed streak.

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

The resulting two-dimensional conditional correlations associated with low- and
high-speed streaks are shown in figure 8. The average streamwise dimension of the
low-speed streak for β = 0 (ZPG) is longer than that for β = 1.68 (APG). For β =0,
the 0.15 contours show that the average streamwise extent of the structure exceeds
1000 viscous wall units. For β =1.68, the average length is approximately 700 viscous
wall units. The low-speed streaks are longer than the high-speed streaks in both flows.
These results are consistent with the instantaneous realizations in figure 6.

3.3. Instantaneous visualization of near-wall vortical structures

Figure 9 shows the instantaneous vortical structures in the near-wall region. We
adopted the vortex identification method of Zhou et al. (1999) to visualize the near-
wall vortices. They identified vortices by using an isosurface of swirling strength λci ,
where λci is the imaginary part of the complex eigenvalue of the velocity gradient
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Figure 9. Near-wall vortical structures (y+ < 50): (a) β =0; (b) β = 1.68.

tensor. The swirling strength is a quantity used to detect vortex cores and to distinguish
vortical structures from shear regions. Isosurface values of 20 % of maximum were
used for both the APG and ZPG flows. The near-wall vortical structures survive even
in the presence of a strong APG. Quasi-streamwise vortices are still dominant in the
near-wall region in the presence of the APG and can be identified as much as for the
ZPG flow. One difference between the APG and ZPG flows is that vortical structures
are more inclined in the spanwise direction at y+ < 50 in the APG boundary layer.

The auto-correlation Rvv as a function of spanwise spatial separation is shown
in figure 7(b). The auto-correlation Rvv of the wall-normal velocity can be used to
study the properties of quasi-streamwise vortices (Kim et al. 1987). The separation
of the minima in Rvv corresponds to the average radius of the streamwise vortices.
The separation of the minima in Rvv at r+

z ≈ 25 remains unchanged as β varies and
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is similar to that for the ZPG flow. The average diameter of 50 viscous wall units
is probably insensitive to the strength of the APG. The probability density functions
(p.d.f.s) were calculated to compare the APG and ZPG flows statistically. The p.d.f.s
for the streamwise vorticity fluctuations ωx at y+ ≈ 20 are depicted in figure 10(a). In
this figure, the vorticity fluctuations are normalized by their root-mean-square values.
The APG and ZPG results are in good agreement except near ω′

x = 0, which indicates
that the streamwise vortices are nearly identically distributed in the ZPG and APG
flows. Figure 10(b) shows the p.d.f.s of the spanwise vorticity fluctuations. It is clear
that strong fluctuations (|ω′

z| > 0.5 ωz,rms) occur more frequently in the APG flow than
in the ZPG flow. This result indicates that quasi-spanwise vortices are more activated
in the APG flows and is consistent with the instantaneous realizations shown in
figure 9.

3.4. Conditional events

Vortical structures are closely related to the production of Reynolds shear stress
(Robinson 1991). Moin, Adrian & Kim (1987) proposed that conditionally averaged
vortical structures can be identified by carrying out an LSE based on the
velocity vector that makes the largest contribution to the Reynolds shear stress.
We examined the near-wall vortical structures associated with the production of
Reynolds shear stress by using the method of Moin et al. (1987). The weighted
joint p.d.f.s, u′v′p.d .f .(u′, v′), were examined to determine the conditional event
vector uE =(um, vm). These events were detected by finding the maximum values
of u′v′p.d .f .(u′, v′) in the second and fourth quadrants (Q2 and Q4). These Q2 and
Q4 events contribute to the positive production of Reynolds shear stress. The event
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angles γ = tan−1(vm/um) defined by uE are presented in figure 11 for all three values
of β . Note that the flow structures estimated with the same vm/um have the same
shapes (Moin et al. 1987).

Figures 11(a) and 11(c) show the Q2 event angles (γII ) as functions of y normalized
by the outer and inner variables respectively. For comparison, the results for channel
flow at Reτ = 395 from Kim, Sung & Adrian (2008) are also included. The profile
of the ZPG boundary layer is in good agreement with that for channel flow. This
result suggests that the angle of the velocity vector with the largest contribution to
the Reynolds shear stress is independent of flow type, i.e. channel flow or boundary
layer. As shown in figure 11(c), γII grows with y for fixed β at y+ < 100. The rapid
change near y+ = 30 is attributed to a change in the dominant structure, from quasi-
streamwise vortices to hairpin vortices inclined with respect to the flow (Moin et al.
1987). The APG Q2 event vectors have larger inclination angles than those for the
ZPG flow: as β increases, γII increases. The increase in γII with β is partly due to the
frequent appearance of transverse structures, which induce ejection motions inclined
at a deeper angle than those of the streamwise vortices in the near-wall region, as
shown in figure 9.
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The behaviour of the Q4 event angle (γIV ) in the near-wall region is similar to
that observed for γII ; γIV grows with y for fixed β and increases with increasing β ,
as can be seen in figure 11(d ). An obvious difference between the APG and ZPG
flows is that in the former systems a new peak forms at the log layer as β increases.
This peak is attributed to the effect of large-scale sweep motions in this region. The
downward diffusion of turbulence has been observed in many previous studies of
strong APG TBLs (Nagano et al. 1993; Krogstad & Sk̊are 1995; Houra, Tsuji &
Nagano 2000; Lee & Sung 2008). The predominant downward motions with large
inclination angles with respect to the flow contribute significantly to Reynolds shear
stress in the log region of the APG TBLs. Outside the log layer in figures 11(a) and
11(b), the inclination angle is roughly constant at approximately 30◦ up to y/δ = 0.6,
where δ is the boundary layer thickness, beyond which it increases. The inclination
angle is roughly insensitive to the strength of the APG in this region.

3.5. Linear estimation of near-wall vortical structures

Conditional eddies around the Q2 events that make the largest contribution to
the mean Reynolds shear stress of APG and ZPG at y+ ≈ 5.5 are compared
in figure 12. We employed LSE because direct computation of the conditional
averages is impractical. It is well known that LSE is a robust conditionally averaged
approximation that provides satisfactory results for various turbulent fields (Adrian
et al. 1989). A stochastic estimate of a conditionally averaged flow field can be
obtained by expanding the conditional average in a power series about the event Ej ,
i.e.

〈ui |Ej 〉 = LijEj + MijkEjEk + L. (3.3)

The unknown coefficients Lij , Mijk, . . . can be determined by minimizing the mean-
square error between the approximation and the conditional average. In the case of
linear estimation, only the first term is retained and the minimization yields

〈Ej (x)Ek(x)〉Lij = 〈ui(x + r)Ek(x)〉. (3.4)

From (3.4), the linear estimate of the conditional average ûi(x + r) of
〈ui(x + r)|um(x), vm(x)〉 reduces to

ûi(x + r) = Li1um(x) + Li2vm(x), (3.5)
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with i =1, 2 and 3 and[
Li1

Li2

]
=

1

u2
rmsv

2
rms − 〈uv〉2

[
v2

rms −〈uv〉
−〈uv〉 u2

rms

][
〈u(x)ui(x + r)〉
〈v(x)ui(x + r)〉

]
. (3.6)

The conditional eddies were visualized by using an isosurface of λci based on the
conditionally averaged velocity fluctuation fields. The conditional eddy for the given
Q2 event takes the form of a quasi-streamwise vortex with its centre located near
y+ =20. This geometry is consistent with the instantaneous fields. The streamwise
vortices are out of phase in reality (Jeong et al. 1997). The symmetrical shape of
conditional averaging is due to the statistical symmetry of the given event with
respect to the reflection about the vertical plane at r+

z = 0.
The inclination angle in the vertical plane is about 7◦ for the ZPG flow. The

inclination angle was evaluated from the loci of the maximum λci inside the conditional
eddies. This angle is slightly less than that reported by Jeong et al. (1997) for near-
wall coherent structures. We expect such angles to be contaminated by near-wall
streaks, since the LSE is based on two-point correlations that reflect information
about the near-wall streaks (Hutchins, Hambleton & Marusic 2005). In the APG
flow, the inclination angle of the streamwise vortex is slightly higher, approximately
9◦. The educed vortices with an isosurface of λciν/u2

t = 0.017 have streamwise extents
of about 140 viscous wall units for both the APG and ZPG flows. However, the
APG transverse and vertical extents are larger than those of the ZPG flow. This
result indicates that the swirling motion in the APG streamwise direction is stronger
than that in the ZPG flow. Although the distributions of near-wall vortices in the
APG flows are similar to that in the ZPG flow, the enhanced swirling motion of the
individual vortices in the presence of the APG results in an increase in the averaged
vorticity fluctuations normalized by wall units in the near-wall region, as shown in
figure 13.

4. Large-scale structures in the outer region
Various results indicating the presence of LMRs and packets of hairpin vortices

in ZPG flows have recently been reported (Adrian et al. 2000; Ganapathisubramani
et al. 2003). Although several types of structures are present in the outer layers of
TBLs, it appears that elongated LMRs and hairpin packets are the dominant outer
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above local free-stream velocity) respectively.

layer structures associated with turbulence production (Ganapathisubramani et al.
2003). LMRs and coherent groups of vortices are also present throughout the outer
layers of the APG flows. Figure 14 shows a visualization of an instantaneous flow field
subjected to a strong APG. Several elongated low-speed regions are present in the
outer layer, and each of them lies beneath a group of streamwise-aligned hairpin-like
structures. Snapshots of time evolution indicate that the group of vortices convects
downstream with coherence. In this section, we discuss these large-scale structures in
the outer layers of APG TBLs and their statistical properties.
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Figure 16. Instantaneous u-velocity contours at y/δ = 0.45: (a) β = 0; (b) β = 1.68. The black
and white areas represent regions 10 % below and above the local mean velocity respectively.

4.1. Instantaneous visualizations of large-scale outer structures

Flow visualizations were performed to demonstrate the presence of LMRs in the
outer layers of APG TBLs. Figure 15 shows the streamwise velocity contours in the
x–z plane at the top of the log layer. The white and black areas correspond to higher-
and lower-speed fluid regions respectively. LMRs are also present in the APG flow
and are highly elongated in the streamwise direction, as described for ZPG boundary
layers by Tomkins & Adrian (2003). In both realizations, there are three LMRs in
the log layer. Each LMR extends beyond the streamwise range examined, indicating
the presence of streamwise regions longer than 4δ. The width of the LMRs is about
0.4δ.

Figure 16 shows LMRs in the wake region at the same representative time under
consideration in figure 15. In the ZPG flow, fewer LMRs are visible at y/δ = 0.45.
This result is consistent with the experimental observation that low-speed regions in
the wake region of a ZPG TBL are difficult to identify because the larger packets
in this region induce weaker low-speed flow (Adrian et al. 2000). In the APG flow,
however, the LMRs in the wake region are similar to those at the top of the log
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layer in figure 15(b); i.e. they are still dominant and regular in the wake region. These
findings support the conclusion that the outer LMRs are intensified and regulated by
the APG and that strong velocity fluctuations with respect to the mean velocity are
present in the outer streaky structures. We suggest that the outer maximum peaks
observed in the Reynolds stress profiles and in the turbulence intensities of APG
TBLs (figures 8 and 9 of Lee & Sung 2008) are related to the outer streaky structures.

Galilean decomposition has been used to detect swirling motions in flows. If the
convection velocity is subtracted from the flow field, velocity vectors with a streamwise
component that is similar to the selected convection velocity have a small magnitude,
so such regions appear light in the visualization. Vortex patterns moving with a
velocity equal to the subtracted convection velocity are seen in such light regions.
Figure 17 shows the instantaneous velocity fields in the streamwise–wall-normal plane
of the boundary layer for the ZPG and APG flows. The velocity fields were processed
with the Galilean frames. The swirling strength contours are also shown in the
background to highlight the locations of the vortex cores. A single vortex packet
is evident in both flows. In the APG flow, several vortex cores are aligned with an
inclination angle of about 18◦ relative to the wall and advect with a similar convection
velocity. These vortex cores are associated with the heads of hairpin-like vortices, i.e.
asymmetric hairpins, cane-like vortices, horseshoe vortices or hairpin vortices. The
ejection of low-speed fluid away from the wall under the vortex is consistent with
the hairpin vortex signature introduced by Adrian et al. (2000). The inclination angle
of the packet in the APG flow is larger than that for the ZPG flow, for which the
angle is approximately 13◦. However, these large-scale structures are similar to those
proposed in the conceptual model of hairpin packets in ZPG TBLs of Adrian et al.
(2000). These instantaneous fields indicate that vortex packets are common features
in the outer regions of TBLs subjected to an APG.
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4.2. Linear estimation of LMRs

The instantaneous realizations presented in the preceding section demonstrate the
presence and dominance of LMRs in the outer layers of APG TBLs. In this section,
LSE is employed to obtain quantitative structural information about the LMRs in
TBLs subjected to APGs. LSE has previously been used to estimate the effects on a
conditionally averaged velocity field on the presence of a negative streamwise velocity
event (Adrian & Moin 1988). Tomkins & Adrian (2003) suggested that the average
size of LMRs can be quantified from an LSE of conditionally averaged structures
resulting from an event of negative fluctuating streamwise velocity. The linear estimate
of the conditional average is given by

ûi(x + r) = Li1u1(x), (4.1)

with i =1, 2 and 3 and

Li1 =
〈ui(x + r)u1(x)〉

〈u2
1〉 . (4.2)

Estimates were obtained at the log layer and in the middle of the boundary layer. The
velocity contours of the estimates in figure 18 show that the conditionally averaged
structure is a large low-speed region that is elongated in the streamwise direction.
This result is in good agreement with the instantaneous fields. These LSE results
provide statistical support for the conclusion that LMRs are the dominant structure
in the outer regions of APG TBLs. The average length and width of these structures
were quantified from the streamwise velocity contours. Since the streamwise extent
of low contours such as −0.1 is beyond the streamwise view of this data and is not
reliable, higher-level contours were used to estimate the average properties of the
conditional structure. Figures 19(a) and 19(b) illustrate the length and width scales
respectively of the conditionally averaged structure based on the extent of the −0.4
contour, as a function of y/δ. The length scale L increases linearly with y in the log
layer (y+ > 30, y/δ < 0.2) for both the APG and ZPG flows. The streamwise lengths
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normalized by δ of the structures of the APG flow are larger than those of the ZPG
flow in this region. The difference between the APG and ZPG lengths is largest at
the bottom of the log layer and decreases with distance from the wall.

Figure 19(b) shows that the average spanwise width W grows almost linearly with
distance from the wall in the log region. The linear variation of the spanwise scales
with y is consistent with Townsend’s attached-eddy hypothesis. Although the widths
normalized by δ of the APG flow are larger than those of the ZPG flow, the rate
of growth of the width in the near-wall region is similar for both flows. Figure 19(c)
shows the ratio L/W as a function of the wall-normal location y/δ. The APG ratio
lies between 5.3 and 2.3. The APG ratio is generally less than that of the ZPG flow,
i.e. between 7.7 and 2.4. This result indicates that the LMRs of the APG flow are less
elongated than those of the ZPG flow due to the influence of the APG. The difference
between the APG and ZPG L/W ratios is largest near the wall and decreases rapidly
with increase in the distance from the wall.

Beyond the log layer, the length scale of the APG flow is approximately constant
up to y/δ = 0.6. In contrast, the length scale of the ZPG flow increases slightly. The
width scale exhibits a trend similar to that of the length scale. In their study with
correlation-based length measurements of TBLs near separation, Krogstad & Sk̊are
(1995) reached a similar conclusion. As a result, the aspect ratio remains roughly
constant at 2.7 in this region, 0.2 <y/δ < 0.6. These results support the conclusion
that well-organized LMRs appear in the wake regions of APG TBLs more regularly
than in those of ZPG TBLs, as shown in figure 16. As a consequence, the average
shape of the LMRs in the x–z plane seems to be statistically identical throughout
the wake region (0.2 <y/δ < 0.6).
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4.3. Conditional eddies

Previous experimental and numerical studies have shown that the Reynolds shear
stress increases in the outer region of the boundary layer and that the maximum peak
moves away from the wall (Sk̊are & Krogstad 1994; Lee & Sung 2008). As mentioned
above, the vortex structures are responsible for the production of Reynolds stress. We
investigated the changes in the vortical structures in the outer region as the Reynolds
shear stress increases. LSE was employed following the same method as used in § 3.5
to obtain the conditionally averaged vortical structures associated with the Reynolds
stress. Figure 20 shows an example of the conditionally averaged velocity fields
associated with the dominant Q2 event in the logarithmic region of an APG TBL.
The velocity vectors are plotted with the mean velocity subtracted. The conditional
eddy was found to be a hairpin-like vortex. This geometry is qualitatively similar to
the conditionally averaged vortical structure found in the turbulent channel data of
Zhou et al. (1999). The vortex is identified in a three-dimensional perspective with an
isosurface of λciν/u2

t = 0.022. The flooded swirling strength contours in these vector
plots clarify the locations of the vortical structures. The induced upward motion of
the low-speed fluid between the two legs of the structure is clear in these vector plots.
The velocity vectors indicate that there are counter-rotating vortical motions around
the vortex legs in the y–z plane at r+

x = 0. In the x–z plane at the y-location of the
given conditional event, the vortex is located on the LMR. These results suggest that
hairpin-type vortices are the predominant structures associated with the production
of Reynolds stress in the APG flows and that they are related to LMRs.

The isosurfaces of λci for the vortical structures of the linearly estimated velocity
fields of the Q2 event at y+ =50 and y/δ = 0.45 are illustrated in figures 21 and 22
respectively. For the conditional eddies associated with the Q2 event at the bottom
of the logarithmic region, the streamwise lengths of the eddies in the APG flow are
similar to those of the ZPG flow identified by λciν/u2

t = 0.028. However, the legs of
the hairpin increase in size as β increases. The inclination angle of the vortex leg also
increases with increasing β . For the conditional eddies associated with the Q2 event at
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Figure 21. Vortical structures of the linearly estimated flow field for the Q2 event vector,
uE = (um, vm, 0), at approximately y+ =50.

y/δ = 0.45, the spanwise extents of the eddies in the APG flow are larger than those
in the ZPG flow detected by an isosurface of swirling strength (60 % of maximum
λci). The difference between the APG and ZPG eddy sizes increases when the eddies
are identified by the same isosurfaces, i.e. λciδ/U∞ =0.25. This result implies that
the swirling motion of the individual vortex located in the wake region of the APG
flow is stronger than that of the ZPG flow and thus supports the observations for
instantaneous realizations of outer vortices of Lee & Sung (2008).

The loci of maximum swirling strength inside the conditional eddies are illustrated
in figure 22 to further characterize the size and shape of the eddies. Figure 23(a)
shows that the cores of the conditional structures associated with the Q2 event at
y+ = 50 take the form of a hairpin-like eddy with two quasi-streamwise vortices. The
centres of the upstream streamwise vortices are located near y+ =20 and 83 viscous
wall units apart in the spanwise direction for β = 1.68. This separation is slightly
larger than that of the ZPG flow (β = 0), i.e. 68 viscous wall units. The vortices have
shallow inclination angles in the vertical plane of 9.2◦ and 8.8◦ for the APG and ZPG
flows respectively. These angles are similar to the inclination angle of the near-wall
streamwise vortex described in § 3.5. The downstream part of the hairpin legs of about
60 viscous wall units for β = 1.68 has a steeper inclination angle of 28.8◦. This angle
is higher than the angle in the ZPG flow (21.3◦). The steeply inclined part of the
conditional eddies associated with the Q2 event at y/δ > 0.2 resembles a Λ shape.
In this part, the spanwise spacing between the centre of each vortex leg decreases
almost linearly with distance from the wall, as shown in figures 23(b) and 23(c). The
inclination angle in the x–z plane is about 32.8◦ for the y-location of the conditional
event at y/δ = 0.45. Note that there is a strong similarity between the Λ-shaped parts
of the conditional eddies for the given events at the same wall-normal location for
the APG and ZPG flows, when the length scales are normalized by δ. The inclination
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angle of the vortex leg of approximately 30◦ in the vertical plane is similar for the
APG and ZPG flows (figure 24e).

Figures 24(a)–24(c) show the loci of the eddy centres at rx/δ = 0, −0.1 and −0.15
respectively for all conditional eddies. The spanwise spacing between the vortex cores
increases with distance from the wall in the log region. Beyond the log region, the
spanwise spacing is approximately constant for both the APG and ZPG flows. The
spanwise separations at the upstream ends of the eddies are about 0.4δ, as shown in
figure 23(c). This result is in good agreement with the width of the LMRs estimated
above from the instantaneous realizations. This result supports the idea that the
hairpin-like eddies grow or merge with each other in the log layer, as suggested by
Tomkins & Adrian (2003), and mature beyond the log layer to a width similar to that
of the LMR at the corresponding distance from the wall. The ratio of the spanwise
spacing between the vortex cores at rx/δ = −0.1 to the width of the LMR based on
the −0.4 contours of LSE is plotted as a function of y/δ in figure 24(d ). This ratio is
roughly constant at approximately 1 in the outer region (y/δ > 0.2) for both the APG
and ZPG flows, although there is some scatter in the ratio. The width of the LMR
is closely associated with the size of the individual conditional eddies in the outer
region.
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4.4. Stochastic estimation of vortex organization in the outer layer

The above visualizations of instantaneous structures and velocity fields show that
hairpin-like vortex organizations are associated with LMRs and are commonly visible
in the outer regions of APG TBLs. In this section, we provide statistical evidence
that the outer layers of APG TBLs are populated by organizations of vortices
aligned coherently in the streamwise direction. To investigate the vortex organizations
statistically, we now consider the LSE of the average flow field associated with a single
spanwise vortical motion (represented by λci). The analysis in this section follows that
of Christensen & Adrian (2001). However, their approach to planar PIV data is
extended for volumetric DNS data to educe the three-dimensional form of the vortex
organization. Here λci is calculated from the two-dimensional velocity gradient tensor
D in the x–y plane, in order to detect only spanwise swirling motion at a given
location if possible; D can be expressed as

D =

[
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

]
. (4.3)

The conditional event is chosen to be a positive λci . The LSE ûi(x + r) of this
conditional average 〈ui(x+r)|λci(x)〉 is given by (Christensen & Adrian 2001)

ûi(x + r) = Liλci(x), (4.4)

with i = 1, 2 and 3 and

Li =
〈λci(x)ui(x + r)〉

〈λci(x)2〉 . (4.5)

It can be seen from (4.3) that two-point correlations between the swirling strength
and the velocity are necessary to calculate the coefficient Li .
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4.4.1. Two-point correlations between swirling strength and velocity

Figure 25 shows the contours of the two-point correlations between swirling
strength and streamwise velocity Rλu at y/δ = 0.2. Figure 26 shows the wall-normal
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Figure 26. Two-point correlations between the wall-normal velocity and the swirling strength
centred at y/δ = 0.2 : x–y plane at rz = 0, (a) β = 0 and (b) β = 1.68; x–z plane at y/δ = 0.2,
(c) β = 0 and (d ) β = 1.68. Contour levels are from −0.12 to 0.12 with increments of 0.02.

correlation functions Rλv for the same location. The present streamwise and wall-
normal correlation functions for the ZPG flow are qualitatively consistent with those
of Christensen & Adrian (2001), which were obtained from channel data. The contours
of correlation show the average velocity field associated with a vortex core located at
the reference point. Since the swirling strength always has a positive or zero value, Rλu

and Rλv have the same sign as the streamwise and wall-normal velocities respectively.
Thus, the statistically dominant direction of rotation around the vortex core can be
determined from the two-point correlations between swirling strength and velocity.
In the x–y plane, Rλu is positive above the vortex core and negative below the vortex
core; Rλv is positive left of r+

x = 0 and negative right of r+
x = 0 for both the APG and

ZPG flows; i.e. the rotation in the spanwise vortices is clockwise. This result implies
that spanwise vortices with clockwise rotation are detected in this region more often
than those with counterclockwise rotation, which is consistent with the instantaneous
visualizations.

When a strong APG is applied, the spatial extents of the negative Rλv regions
behind the vortex cores increase. Note that the negative Rλv region expands towards
the near-wall region for a strong APG flow, as can be seen in figure 26(b). This
result indicates that the outer turbulence is transported further towards the wall
for a strong APG flow and that this strong downward diffusion is associated with
the spanwise vortex in the log layer; it also complements the experimental study of
Sk̊are & Krogstad (1994), which shows that the direction of the turbulent diffusion
is reversed, resulting in considerable turbulent transport towards the wall in the TBL
near separation. Figures 26(c) and 26(d ) show the contours of Rλv for ZPG and APG
flows in the x–z plane at y/δ = 0.2 respectively. The spanwise extent of negative Rλv

contours for the APG flow is greater than that for the ZPG flow. This difference is
linked to the increase in the spanwise extent of conditional eddies that results from
the APG, as shown in figure 22(b). However, the change in the spanwise dimension
of the positive Rλv region is less than that of the negative Rλv region because the
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positive region (the Q2 event) is confined by the two legs of the hairpin vortex, and
the distances in the APG and ZPG flows are similar, as shown in figure 23. The
streamwise extent of the positive Rλu region is greater for the APG flow than for the
ZPG flow. However, the streamwise extent of the negative Rλu region is reduced by
the downward diffusion mentioned above. For streamwise correlation functions, the
inclination angle of the 0-contours is an estimate of the average inclination angle of
the outer vortex organization. The inclination angle of the APG flow is larger than
that of the ZPG flow.

4.4.2. Vortex organizations educed by LSE

The stochastic estimation of the conditionally averaged velocity fields around
the single spanwise vortex at y/δ =0.2 was performed using the correlation functions
described in the previous section. The flow structures educed from the linear estimates
are illustrated in figure 27. The velocity vectors in the estimated flow fields were set to
unit magnitude in order to show the weak motions away from the event location more
clearly (Christensen & Adrian 2001). The vortices were visualized using isosurfaces of
λci equal to 7% and 10 % of its maximum for the ZPG and APG flows respectively.
The dark area represents low-speed fluid. The resulting flow structures in the three-
dimensional perspective are packets of hairpin-like vortices for both the ZPG (β = 0)
and APG (β =1.68) flows, as shown in figures 27(a) and 27(b) respectively. It is clear
that the spanwise-oriented vortex structure is located at the event location, which
corresponds to the head of the hairpin-type vortex. This hairpin-like vortex consists
of two quasi-streamwise legs and a steeply inclined hairpin part. This result suggests
that the dominant spanwise swirling motions in the log layer are associated with the
hairpin head. The symmetry of the eddies is a consequence of the statistical symmetry
of the given event with respect to the reflection about the vertical plane at r+

z = 0. Of
course, most individual structures have asymmetric shapes, as shown in figure 14.
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Spanwise vortex structures are visible not only at the event location but also
both upstream and downstream of this location. This result implies that the vortices
are arranged in the streamwise direction with considerable coherence. There is a
qualitative similarity between the averaged vortex organization (figure 27) and the
instantaneous realizations (figure 14). Five and four distinct hairpin-like vortices form
packets in the ZPG and APG flows respectively and are aligned in the streamwise
direction. It is interesting to note that the hairpin legs survive the averaging process
even though the streamwise alignment of the hairpin in each packet is not perfect
and the spanwise size of the packets varies from packet to packet. A little noise is
present in the isosurface of λci away from the event point, since the packets in the
instantaneous fields are not perfectly aligned in the streamwise direction and the
ensembles are not fully converged. However, the ensembles can be used to identify
the spanwise vortex structures. There is an elongated LMR beneath the streamwise
hairpin packet that is bounded by hairpin vortices. These patterns are consistent with
the hairpin vortex packet model of Adrian et al. (2000). For β = 0, compact spanwise
vortex structures can be seen, as shown in figure 27(c) (marked A and C). Zhou et al.
(1999) observed similar spanwise vortices located between quasi-streamwise vortices
and showed that compact spanwise vortices assist the uplift of quasi-streamwise
vortices and that the spanwise vortex is then connected with the lifted streamwise
vortices. For β =1.68, the spanwise extents of the hairpin vortices located at y/δ > 0.2
are relatively insensitive to the distance from the wall. The spanwise extent is about
0.4δ, as shown in figure 27(d ).

The velocity vector fields on the x–y plane at rz = 0 for the ZPG and APG flows
are shown in figures 28(a) and 28(b) respectively. The locations of the vortex cores
are indicated by the swirling strength contours. It is clear that upward motion of
low-speed fluid (Q2) is observed just upstream of and below the vortex core at the
event location for both flows. For β =1.68, a downward motion of high-speed fluid
(Q4) that is stronger than that for β =0 appears just behind the vortex core. Spanwise
swirling motions are visible not only at the specified event location but also both
upstream and downstream of this location. For β = 0, the vortical motions are inclined
away from the wall at an angle of 13◦. This result is consistent with the observations
of Zhou et al. (1999) and Christensen & Adrian (2001). For β = 1.68, the inclination
angle is approximately 18.5◦, which is larger than that for β = 0. These inclination
angles are consistent with the instantaneous realizations in figure 17.

For β =0, the streamwise separation of the vortex cores varies with the distance
from the wall. The streamwise distance between the vortex cores A and B is
approximately 150 viscous wall units (0.23δ). This separation is similar to the
experimentally observed streamwise separation between hairpin heads within a packet
of 100–200 viscous wall units (Adrian et al. 2000). Away from the wall, the vortex cores
B and C are separated by approximately 550 viscous wall units (0.83δ). Adrian et al.
(2000) reported that the vortex spacing is governed by inner scales but increases as
the hairpins grow. In contrast, Christensen & Adrian (2001) showed that the average
vortex spacing can be scaled with the outer length scale δ regardless of the Reynolds
number, with a spacing of approximately 0.3–0.4δ. The spacing is approximately half
of the vortex spacing between B and C. The vortex spacing is in good agreement with
the results of Christensen & Adrian (2001), except for the region between B and C;
they noted that the swirling motion 0.4δ downstream from the event location is not
clear. The increased spacing between vortex cores found in the present data might be
the result of a vortex that is missing due to the variation of the vortex spacing from
packet to packet during the averaging process, as suggested in Christensen & Adrian
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Figure 28. Linear estimate of the conditional velocity field based on a spanwise swirl at
y/δ = 0.2. The locations of the vortex cores are indicated by the swirling strength contours.

(2001). However, the swirling patterns of the downstream vortices C, D and E are clear.
The streamwise spacings between C and D and between D and E are approximately
0.28δ and 0.2δ respectively, which are similar to the distance between A and B. These
streamwise separations are also similar to the streamwise dimensions of the individual
outer conditional eddies. These results suggest that vortices A and C are secondary
vortices generated upstream of the primary vortices B and D respectively, as reported
in Zhou, Adrian & Balachandar (1996), and that the hairpin spacing is governed
by both inner and outer variables. The streamwise spacing between the primary
and secondary vortices is governed by small scales associated with the streamwise
dimensions of individual hairpins, whereas the distance between the primary vortices
B and D is governed by large scales associated with the streamwise dimensions of
packets.

The qualitative similarity of the vortex spacing in the APG and ZPG flows is
clear. However, the vortex spacing increases when the length scale is normalized by
δ, as shown in figure 28(b). The streamwise vortex spacing in a packet is related
to the frequency of strong Q2 events. Multiple Q2 events can occur within a single
burst event (Bogard & Tiederman 1986). A single burst event is associated with the
passage of a hairpin head in a packet (Adrian et al. 2000). If the spacing of vortex
heads increases (respectively decreases), the frequency of the Q2 events associated
with hairpin-like vortices decreases (respectively increases). Krogstad & Sk̊are (1995)
reported that the frequency of Q2 events scaled with outer scaling is reduced and
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that Q4 events last much longer in the APG flow than in the ZPG flow, in particular
for strong events in APG TBLs. This reduction in the frequency of Q2 events can
be explained in terms of increases in the streamwise spacing of hairpins in the
conditionally averaged packets of the APG flow. The longer durations of Q4 events
in the APG flow is related to the increased streamwise extent of the negative Rλu

region just behind the vortex head.

5. Summary and conclusions
The effects of APGs on the structures of TBLs have been investigated. A comparison

of the structures of ZPG TBLs and APG TBLs has been presented. When a strong
APG is applied, near-wall streaks are weakened; the spanwise spacing between the
streaks becomes irregular and increases significantly up to 400 viscous wall units,
approximately four times larger than that of the ZPG flow, whereas the width of the
streaks is relatively insensitive to the strength of the pressure gradient. A streamwise-
elongated LMR is the predominant structure in the log layer. LSE of the conditional
average based on a low-speed event was used to show that LMRs containing strong
velocity fluctuations are present in the middle of the APG boundary layer as well as in
the log layer, in contrast to the ZPG flow. Enhancements of the outer kinetic energy
and the Reynolds shear stress are associated with the presence of large-scale outer
streaky structures in APG TBLs. The average shape of the LMRs is less elongated
and grows linearly with distance from the wall in the log layer. Beyond the log layer,
the size of this region is approximately constant until y/δ =0.6, whereas the size of
this region in the ZPG flow increases slightly.

The modifications of the vortical structures that result from the APG were examined
by using linear estimates of the conditional eddies around the Q2 event that makes
the largest contribution to the mean Reynolds shear stress. For a conditional event at
y+ = 5.5, the conditional eddies were found to be quasi-streamwise vortices. The mean
diameter and the streamwise length normalized by inner scales are probably insensitive
to the strength of the pressure gradient. The p.d.f.s of the streamwise vorticity show
that the near-wall streamwise vorticity fluctuations of both flows normalized by
their root-mean-square values are nearly identically distributed. However, the swirling
motions of individual vortices in the streamwise direction are stronger for the APG
flow than for the ZPG flow. For a conditional event at y+ > 50, the conditional
eddies take the form of hairpin-like vortices. Hairpin-like vortices are the dominant
structures associated with the production of outer Reynolds shear stress. The swirling
motion of each individual hairpin in the outer region is stronger for the APG flow
than for the ZPG flow. For the conditional event in the log layer, the inclination
angle of the vortex leg increases when an APG is applied. Beyond the log layer, the
backbone of the steeply inclined part of each conditional eddy has a Λ shape with
dimensions governed by the outer variables. The Λ shapes found in the two cases
are similar when the length scales are normalized by the boundary layer thickness.
Beyond y =0.2δ, the inclination angle of this part in the vertical plane is roughly
constant at 30◦, and the spanwise separation at the upstream end of the eddies is
constant, approximately 0.4δ, which is in good agreement with the width of the LMR.
The width of this large-scale outer structure is closely associated with the spanwise
size of the conditional eddies in the outer region. Two-point correlations between
the swirling strength and the velocity show that the outer turbulence is transported
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further towards the wall just behind the spanwise vortex core in the presence of an
APG.

Finally, the present results provide the first three-dimensional evidence for packets
of hairpin-type vortices in TBLs and are based on linear stochastic estimation of the
conditionally averaged flow field associated with a single transverse vortex core. The
outer region of the TBL is populated with streamwise packets of vortices. Although
it may be not possible to detect all hairpins on a packet through the current analysis,
the packet of vortices is sufficiently significant in the outer region of the APG to leave
a footprint on the results of the conditional average. The vortices are relatively well
aligned in the streamwise direction and convect coherently behind each other. The
APG augments the angle of inclination of the packets and the spacing of the vortex
heads. The increase in the streamwise vortex spacing explains the reduction in the
frequency of Q2 events. We believe that the typical characteristics of a hairpin packet
are present in an average sense, since multiple hairpin heads and legs in a packet
survive the conditional averaging, despite variations in the hairpin arrangement in
the instantaneous vortex packets. Studies of much higher Reynolds numbers are
needed to determine the overall behaviour of hairpin packets, since the packets at
low Reynolds numbers contain just 3–5 vortices.
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